Fuel Switch & Energy Efficiency CDM Project Case Study

JICA CDM Expert Team

Objective & Content

Content:

- Scale of Energy Saving & Fuel Change
- What is Fuel Change project?
- What is Energy Saving project?
- Case Study

Objective:

?&!

0. Before Step Into CDM

Be familiar with the unit of energy to have a scale. How much energy do they consume/generate??

発電出力: 312kW ~ 2,700kW

S SmartEnergy

	Fukushima 1	Hydro Power		Gas	Engin	e	Household	
Capacity	460,000 kW	25,000 kW		312 kW		kW	0.48 kW	
Runtime	6,000 hours	4,800 hours		4,000 hours		urs	8,760 hours	
Power	MWh	MWh		MWh		Wh	MWh	
Heat (MJ)	x 10 ⁶ MJ	x10 ⁶ MJ		x10 ⁶ MJ		MJ	x 10 ⁶ MJ	
Energy(TOE)	x 10 ³ TOE	x 10 ³ TOE			x 10 ³ T	OE	x 10 ³ TOE	
Calculate	and fill the table.		kilo	mega	giga	tera	peta	
	1 TOE =41.686 GJ		k	М	G	Т	Р	3
	1kcal = 4,166J		10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	

- = 238.353 x 10^3 TOE
- = (9,936,000 x 10^3 GJ) ÷ 41.686GJ/TOE
- 9,936 x 10^6 MJ ÷ 41.686GJ/TOE
- = 9,936 x 10^6 MJ
- $= 993.6 \times 10^{7} MJ$
- 276 x 10^7 kWh x 3.6 MJ/kWh
- = 2,760,000 MWh
- $(1MWh = 1,000kWh = 10^{3}kWh)$
- $= 276 \times 10^{4} MWh$
- $= 276 \times 10^{7} \text{ kWh}$
- 460,000kW x 6,000 hours

- Fukushima 1
- Hydro Power Station 25,000kW x 4,800hours
- = 1,200 x 10^5 kWh
- = 120 x 10^3 MWh
 - 1,200 x 10^5 kWh x 3.6MJ/kWh
- = 4,320 x 10^5 MJ
- $= 432 \times 10^{6} MJ$
 - 432 x 10^6MJ ÷ 41.686GJ/TOE
- = (432 x 10^3 GJ) ÷ 41.686GJ/TOE
- = 10.36 x 10^3 TOE

Gas Engine 312kW x 4,000hours = 1,248 x 10^3 kWh

 $= (4.492 \times 10^{3} \text{ GJ}) \div 41.686$

= 1,248 MWh

= 4,492 x 10^3 MJ

1,248 x 10^3 kWh x 3.6 MJ/kWh

4,492 x 10^3 MJ ÷ 41.686 GJ/TOE

- - 4.200kWh x 3.6 MJ/kWh

0.48 kW x 8,760 hours

= 15,120 MJ

= 4,204.8 kWh

= 4.20 MWh

Household

- = 0.015 x 10^6 GJ
- = 15 x 10^3 GJ
- 15 x 10^3GJ ÷ 41.686 GJ/TOE = 0.0032 x 10^3 TOE

= 0.108 x 10^3 TOE

GJ/TOE

= 107.9 TOE

Be familiar with the unit of energy to have a scale. How much energy do they consume/generate??

発電出力: 312kW ~ 2,700kW

S SmartEnergy

	Fukushima 1	Hydro Power	Gas Engine	Household
Capacity	460,000 kW	25,000 kW	312 kW	0.48 kW
Runtime	6,000 hours	4,800 hours	4,000 hours	8,760 hours
Power	2,760,000 MWh	120,000 MWh	1,248 MWh	4.20 MWh
Heat (MJ)	9,936 x 10 ⁶ MJ	432 x10 ⁶ MJ	4.5 x10 ⁶ MJ	0.015 x 10 ⁶ MJ
Energy(TOE)	2,383.5 x 10 ³ TOE	10.4 x 10 ³ TOE	0.108 x 10 ³ TOE	0.0032 x 10 ³ TOE
A				

Calculate and fill the table. 1kWh =3.6 MJ 1 TOE =41.686 GJ 1kcal = 4,166J

kilo	mega	giga	tera	peta
k	М	G	Т	Р
10 ³	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵

6

S SmartEnergy

O.Emission Factors of Major Energy Sources

Fuel	Heat Value	COEF	EF	Gravity	
	TJ/MT	tCO2/TJ	tCO2/MT	t/m3:t/kl	
Furnace Oil	0.0410	77.4		0.972t/kl	tCO ₂ /kl
Diesel Oil	0.0433	74.1		0.846t/kl	tCO ₂ /kl
Residual Oil	0.0410	77.4		0.972t/kl	tCO ₂ /kl
Coal	0.0293	101.0		1.300t/m ³	tCO ₂ /t
LPG	0.0502	63.1	3.168		3.168tCO ₂ /kg
Natural Gas	0.0411	64.2	2.639		2.108kgCO ₂ /Nm ³
Grid Electricity					0.686tCO ₂ /MWh

Data source

1. Energy Data 2007, Sustainable Energy Authority

2. IPCC Guideline for National Greenhouse Gas Inventories, 2006, Table 1-4

3. Natural Gas's gravity data was not available and utilized Japanese data for reference purposes. 7 Nm³ is a unit of gas under normal state.

S SmartEnergy

O.Emission Factors of Major Energy Sources

Fuel	Heat Value	COEF	EF	Gravity	
	TJ/MT	tCO2/TJ	tCO2/MT	t/m3:t/kl	
Furnace Oil	0.0410	77.4	3.173	0.972t/kl	3.264tCO ₂ /kl
Diesel Oil	0.0433	74.1	3.209	0.846t/kl	3.793tCO ₂ /kl
Residual Oil	0.0410	77.4	3.173	0.972t/kl	3.264tCO ₂ /kl
Coal	0.0293	101.0	2.816	1.300t/m ³	3.661tCO ₂ /t
LPG	0.0502	63.1	3.168		3.168tCO ₂ /kg
Natural Gas	0.0411	64.2	2.639		2.108kgCO ₂ /Nm ³
Grid Electricity					0.686tCO ₂ /MWh

Data source

1. Energy Data 2007, Sustainable Energy Authority

2. IPCC Guideline for National Greenhouse Gas Inventories, 2006, Table 1-4

3. Natural Gas's gravity data was not available and utilized Japanese data for reference purposes. 8 Nm³ is a unit of gas under normal state.

More Questions

Question A:

A volume of steel drum is 200litres.

- (1) Calculate CO_2 emissions by combusting a full of furnace oil in steel drum. Also calculate heat value, one can derive from this combustion. heat value of fuel shall be derived as a product of unit heat value and gravity of fuel.
- 2 Calculate how many kg of coal do you need to burn, if you earn same amount of heat? Also calculate CO₂ emissions from this coal combustion.

Still More Questions

Question B:

A factory is introducing sawdust alternate for furnace oil.

A dimension of cargo box of 4 tone loading truck(photo) is shown in figure below. A density of saw dust is 1.51kg/m³ and unit heat value is 2000kcal/kg.

- (1) Calculate heat and CO_2 emissions by combusting full cargo load of saw dust.
- (2) Calculate how much furnace oil can replaced by amount of sawdust calculated in QB-1.

1. What is Fuel Switching?

Coal

Fuel switch measures in this category will replace carbon-intensive fossil fuel with a less-carbonintensive fossil fuel, whereas a switch from fossil fuel to renewable biomass is categorized as "renewable energy".

Biomass Fuel

S SmartEnergy

Se SmartEnergy

In Reality....

Number of CDM project registered and issued CER.

	On Track	Registered	Issued	CER %
Total	71	57		
Coal to NG	9	5	3	65%
Coal to Oil	0	0	0	
Lignite to NG	0	0	0	
New NG plant*	30	26	14	42%
New NG plant utilize LNG	1	8	3	74%
Oil to Electricity	2	0	0	
Oil to LPG	1	0	0	
Oil to NG	28	18	13	100%

*AM0029: Grid Connected electricity generation plants using natural gas is widely used in high performance combined cycle gas pwer generation projects in China and in India.

2. What is Energy Efficiency project?

Energy Efficiency Project

The category energy efficiency includes all measures aiming to enhance the energy efficiency of a certain system. Due to the project activity, a specific output or service requires less energy consumption. Waste energy recovery is also included in this category.

Supply Side Energy Efficiency

Power supplier and distributer implement energy efficiency measures, inc. auxiary power –gen. Heat recovery Combined cycle •Rehabilitation of power station Smart grid

Sc: SmartEnergy

Demand Side Energy Efficiency

the adoption of energy-efficient equipment, lamps, ballasts, refrigerators, motors, fans, air conditioners, appliances in many sites. inc. BEMS(building Energy management System).

2. Energy Efficiency Statistics

- As of May 2011, there are 289 registered Energy Efficiency CDM projects.
- Of which 88 projects are demand side energy efficiency projects and the rest are supply side (including transmission) energy efficiency projects.

Sc: SmartEnergy

• Of all the registered energy efficiency CDM,108 projects have issued CER.

2. Key Insight of Energy Efficiency Project

In project, the output has to be maintained before and after the energy efficiency project

Which is "energy efficient"??

S SmartEnergy

S SmartEnergy

3. Case: Project in Laundromat Services

The company is locates in northern Japanese island. The facility receives linens and daily laundry through retail shops within 150km area's hotels, restaurants an households. The facility used heavy oil combustion boiler for 20 years. The regional natural gas catering company extends the pipeline to the neighborhood and connects to the company's facility.

The project has four components including,

- a) Replacing fuel from heavy oil to natural gas.
- b) Replace lamps to high efficient LEDs.

3. Case: Project in Laundromat Services (Cont'd)

Feature of Energy Use

- Requires intensive energy for pressing (steam), laundry (hot water).
- ◆ Heat requirements varied with peripheral temperatures but stable for year-round.
- ◆ Outside temperature varies from 32°C in August to -20°C in February.
- ◆ Energy costs, electricity and fuel, occupies 50% of expenses.

S SmartEnergy

4. Project A: Boiler Fuel Change

The factory runs 1 x 2.0t boiler and 1 x 0.5t boiler for back up to generate steam and hot water for laundry machine and dry clanging.

Normally, only 2.0t boiler operates.

Both boiler uses heavy oil/furnace oil catered by a tanker truck of oil company upon order.

The project changes fuel only for 2.0t boiler from heavy oil to natural gas.

Fuel consumption	1,752	kl/year
Run-time	12	Hours/day
	264	Day/year

Monitoring parameters

Flow-meters at the heavy oil tank

Sc: SmartEnergy

- ◆Flow meters of the gas line
- Invoice from gas/oil company

Project Baseline Continuous use of carbon intensive fossil fuel.

4. Project B: LED Lighting

Light Emitting Diode (LED) is a lighting devices to alternate traditional lamps.

LED gives more concentrated lighting than conventional lighting thus uses less electricity to give a same illuminance.

The price of LED light is still expensive compared to usual lightings, but it lasts longer and economy in longer term.

Project replace old halogen lamps in factory and warehouse space to LED.

Monitoring

Electric Power of light bulb (W)

Sc: SmartEnergy

- Number of light bulbs
- Operating hours to turn on light bulbs (hours)
- Emission factor of the electricity consumed (tCO2e/MWh)

Project Baseline Continuous use of conventional lamps.

Number of Hg lamp	137	Units
Elec. Power of LED lamp	118	W
Number of LED	83	Units
Operating Hours	3,168	hours

4. Project C: Inverter & Load Variable

Boiler water pump continuously pumping water, regardless water amount in the boiler tank.

Inverter technology on/off the pump be referring water level of the tank. By reducing idle time of the pump, it reduces an electricity consumption.

Monitoring

Power consumption of the system (kWh)

S SmartEnergy

- Number of operational hours (hrs)
- Emission factor of the electricity (tCO₂e/kWh)

4. Project D: Pipe Blanket

Pipe Blanket is a method to cover pipe and high temperature parts by glass wool.

150°C 80°C 130°C 80°C temperature Rm T 2°C Rm T 30°C

Monitoring

- ◆Temperature of in/outflow (°C)
- External temperature (°C)
- ◆Flow rate (m³/sec)
- Consumption of fuel/electricity to generate steam(L of fuel or kWh of electricity)
- ◆Emission factors

Energy saving can achieved due to external temperature and other multiple variables. Blanket project is difficult to prove causality.

S SmartEnergy

4. What can be done in CDM & what not?

	Project A: Boiler Fuel Change	Project B: LED application	Project C: Inverter Application	Project D: Blanket Application
AMS Methodology	III.B	II.E	II.C	
Baseline	Keep using furnace oil.	Keep using mercury lamp	Keep operating pump regardless load/demand	Expose valve where heat are easily leak.
Project	Replace furnace oil to natural gas.	Replace mercury lamp to LED lamp to reduce electricity consumption	Control and limit pump action depends on water level of boiler.	Cover valve to avoid heat expose to atmosphere
Monitoring	Gas consumption with gas flow meter with gas company's invoice.	Electricity Consumption with metering devices and electricity bill.	Metering devices	Continuous monitoring of temperature of fluid and exposed environment.
CDM?				

5. Calculations: Fuel Change

Fuel Consumption before the Project

Furnace Oil Consumption	1,752	kl/year
HV of furnace oil		GJ/kl
Heat obtained with furnace oil		GJ
CO _{EF}		tCO ₂ /kl
CO _{2 Emissions_before}		tCO ₂

Fuel Consumption after the Project

HV of natural gas	MJ/Nm ³
Amount of Natural gas needed	Nm ³ /year
CO _{EF}	kgCO ₂ /Nm ³
CO _{2 Emissions_after}	tCO ₂ /year

5. Calculations: Fuel Change

Fuel Consumption before the Project

Furnace Oil Consumption	1,752	kl/year
HV of furnace oil	39.85	GJ/kl
Heat obtained with furnace oil	69,817.2	GJ
CO _{EF}	3.264	tCO ₂ /kl
CO _{2 Emissions_before}	5,718.53	tCO ₂

Fuel Consumption after the Project

HV of natural gas	46.1	MJ/Nm ³
Amount of Natural gas needed	1,514 x 10^3	Nm ³ /year
CO _{EF}	2.108	kgCO ₂ /Nm ³
CO _{2 Emissions_after}	3,194.51	tCO ₂ /year

5. Calculations: LED Application

Electricity Consumption before the Project

Unit Elec. Cons of Hg light	400	W/unit
Number of lights	137	Units
Daily Working hours	12	Hours/day
Annual Working days	264	Days/year
Electricity Consumption		kWh/year

Electricity Consumption after the Project

Unit Elec. Cons of LED	118	W/unit
Number of lights	83	Units
Annual Working hours	3168	Hours/year
Electricity Consumption		kWh/year
Electricity Saving		kWh/year
CO _{EF}	0.686	tCO ₂ /MWh
ER_ _{LED}		tCO ₂

5. Calculations: LED Application

Electricity Consumption before the Project

Unit Elec. Cons of Hg light	400	W/unit
Number of lights	137	Units
Daily Working hours	12	Hours/day
Annual Working days	264	Days/year
Electricity Consumption	173,606.4	kWh/year

Electricity Consumption after the Project

118	W/unit
83	Units
3168	Hours/year
31,027.39	kWh/year
142,579.0	kWh/year
0.686	tCO ₂ /MWh
97.81	tCO ₂
	118 83 3168 31,027.39 142,579.0 0.686 97.81

6. Grand-Sum of Project

Fuel Change		
CO _{2 Emissions_before}	5,718.53	tCO ₂ /year
CO _{2 Emissions_after}	3,194.00	tCO ₂ /year
ER_Fuel Change	2,524.53	tCO ₂ /year
LED Application		
ER_ _{LED}	97.81	tCO ₂ /year
Total		
	2,622.34	tCO ₂ /year

THE ONLY THING WE KNOW ABOUT THE FUTURE IS THAT IT WILL BE DIFFERENT. PETER DRUCKER ³⁴

Status and Outlook of Carbon Market Prepared for Training Program for CCD, MOE Sri Lanka May 27, 2011 JICA Expert Team